3.67 \(\int \frac{(c-c \sec (e+f x))^2}{\sqrt{a+a \sec (e+f x)}} \, dx\)

Optimal. Leaf size=119 \[ \frac{2 c^2 \tan ^{-1}\left (\frac{\sqrt{a} \tan (e+f x)}{\sqrt{a \sec (e+f x)+a}}\right )}{\sqrt{a} f}-\frac{4 \sqrt{2} c^2 \tan ^{-1}\left (\frac{\sqrt{a} \tan (e+f x)}{\sqrt{2} \sqrt{a \sec (e+f x)+a}}\right )}{\sqrt{a} f}+\frac{2 c^2 \tan (e+f x)}{f \sqrt{a \sec (e+f x)+a}} \]

[Out]

(2*c^2*ArcTan[(Sqrt[a]*Tan[e + f*x])/Sqrt[a + a*Sec[e + f*x]]])/(Sqrt[a]*f) - (4*Sqrt[2]*c^2*ArcTan[(Sqrt[a]*T
an[e + f*x])/(Sqrt[2]*Sqrt[a + a*Sec[e + f*x]])])/(Sqrt[a]*f) + (2*c^2*Tan[e + f*x])/(f*Sqrt[a + a*Sec[e + f*x
]])

________________________________________________________________________________________

Rubi [A]  time = 0.18764, antiderivative size = 119, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 28, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.179, Rules used = {3904, 3887, 479, 522, 203} \[ \frac{2 c^2 \tan ^{-1}\left (\frac{\sqrt{a} \tan (e+f x)}{\sqrt{a \sec (e+f x)+a}}\right )}{\sqrt{a} f}-\frac{4 \sqrt{2} c^2 \tan ^{-1}\left (\frac{\sqrt{a} \tan (e+f x)}{\sqrt{2} \sqrt{a \sec (e+f x)+a}}\right )}{\sqrt{a} f}+\frac{2 c^2 \tan (e+f x)}{f \sqrt{a \sec (e+f x)+a}} \]

Antiderivative was successfully verified.

[In]

Int[(c - c*Sec[e + f*x])^2/Sqrt[a + a*Sec[e + f*x]],x]

[Out]

(2*c^2*ArcTan[(Sqrt[a]*Tan[e + f*x])/Sqrt[a + a*Sec[e + f*x]]])/(Sqrt[a]*f) - (4*Sqrt[2]*c^2*ArcTan[(Sqrt[a]*T
an[e + f*x])/(Sqrt[2]*Sqrt[a + a*Sec[e + f*x]])])/(Sqrt[a]*f) + (2*c^2*Tan[e + f*x])/(f*Sqrt[a + a*Sec[e + f*x
]])

Rule 3904

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_.), x_Symbol] :> Di
st[(-(a*c))^m, Int[Cot[e + f*x]^(2*m)*(c + d*Csc[e + f*x])^(n - m), x], x] /; FreeQ[{a, b, c, d, e, f, n}, x]
&& EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[m] && RationalQ[n] &&  !(IntegerQ[n] && GtQ[m - n, 0])

Rule 3887

Int[cot[(c_.) + (d_.)*(x_)]^(m_.)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_.), x_Symbol] :> Dist[(-2*a^(m/2 +
 n + 1/2))/d, Subst[Int[(x^m*(2 + a*x^2)^(m/2 + n - 1/2))/(1 + a*x^2), x], x, Cot[c + d*x]/Sqrt[a + b*Csc[c +
d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0] && IntegerQ[m/2] && IntegerQ[n - 1/2]

Rule 479

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(e^(2*n
- 1)*(e*x)^(m - 2*n + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q + 1))/(b*d*(m + n*(p + q) + 1)), x] - Dist[e^(2*n)
/(b*d*(m + n*(p + q) + 1)), Int[(e*x)^(m - 2*n)*(a + b*x^n)^p*(c + d*x^n)^q*Simp[a*c*(m - 2*n + 1) + (a*d*(m +
 n*(q - 1) + 1) + b*c*(m + n*(p - 1) + 1))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, p, q}, x] && NeQ[b*c - a*d
, 0] && IGtQ[n, 0] && GtQ[m - n + 1, n] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 522

Int[((e_) + (f_.)*(x_)^(n_))/(((a_) + (b_.)*(x_)^(n_))*((c_) + (d_.)*(x_)^(n_))), x_Symbol] :> Dist[(b*e - a*f
)/(b*c - a*d), Int[1/(a + b*x^n), x], x] - Dist[(d*e - c*f)/(b*c - a*d), Int[1/(c + d*x^n), x], x] /; FreeQ[{a
, b, c, d, e, f, n}, x]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{(c-c \sec (e+f x))^2}{\sqrt{a+a \sec (e+f x)}} \, dx &=\left (a^2 c^2\right ) \int \frac{\tan ^4(e+f x)}{(a+a \sec (e+f x))^{5/2}} \, dx\\ &=-\frac{\left (2 a^2 c^2\right ) \operatorname{Subst}\left (\int \frac{x^4}{\left (1+a x^2\right ) \left (2+a x^2\right )} \, dx,x,-\frac{\tan (e+f x)}{\sqrt{a+a \sec (e+f x)}}\right )}{f}\\ &=\frac{2 c^2 \tan (e+f x)}{f \sqrt{a+a \sec (e+f x)}}+\frac{\left (2 c^2\right ) \operatorname{Subst}\left (\int \frac{2+3 a x^2}{\left (1+a x^2\right ) \left (2+a x^2\right )} \, dx,x,-\frac{\tan (e+f x)}{\sqrt{a+a \sec (e+f x)}}\right )}{f}\\ &=\frac{2 c^2 \tan (e+f x)}{f \sqrt{a+a \sec (e+f x)}}-\frac{\left (2 c^2\right ) \operatorname{Subst}\left (\int \frac{1}{1+a x^2} \, dx,x,-\frac{\tan (e+f x)}{\sqrt{a+a \sec (e+f x)}}\right )}{f}+\frac{\left (8 c^2\right ) \operatorname{Subst}\left (\int \frac{1}{2+a x^2} \, dx,x,-\frac{\tan (e+f x)}{\sqrt{a+a \sec (e+f x)}}\right )}{f}\\ &=\frac{2 c^2 \tan ^{-1}\left (\frac{\sqrt{a} \tan (e+f x)}{\sqrt{a+a \sec (e+f x)}}\right )}{\sqrt{a} f}-\frac{4 \sqrt{2} c^2 \tan ^{-1}\left (\frac{\sqrt{a} \tan (e+f x)}{\sqrt{2} \sqrt{a+a \sec (e+f x)}}\right )}{\sqrt{a} f}+\frac{2 c^2 \tan (e+f x)}{f \sqrt{a+a \sec (e+f x)}}\\ \end{align*}

Mathematica [A]  time = 0.475033, size = 124, normalized size = 1.04 \[ \frac{2 c^2 \cot \left (\frac{1}{2} (e+f x)\right ) \sec (e+f x) \left (-\cos (e+f x)+\cos (e+f x) \sqrt{\sec (e+f x)-1} \tan ^{-1}\left (\sqrt{\sec (e+f x)-1}\right )-2 \sqrt{2} \cos (e+f x) \sqrt{\sec (e+f x)-1} \tan ^{-1}\left (\frac{\sqrt{\sec (e+f x)-1}}{\sqrt{2}}\right )+1\right )}{f \sqrt{a (\sec (e+f x)+1)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(c - c*Sec[e + f*x])^2/Sqrt[a + a*Sec[e + f*x]],x]

[Out]

(2*c^2*Cot[(e + f*x)/2]*(1 - Cos[e + f*x] + ArcTan[Sqrt[-1 + Sec[e + f*x]]]*Cos[e + f*x]*Sqrt[-1 + Sec[e + f*x
]] - 2*Sqrt[2]*ArcTan[Sqrt[-1 + Sec[e + f*x]]/Sqrt[2]]*Cos[e + f*x]*Sqrt[-1 + Sec[e + f*x]])*Sec[e + f*x])/(f*
Sqrt[a*(1 + Sec[e + f*x])])

________________________________________________________________________________________

Maple [B]  time = 0.277, size = 330, normalized size = 2.8 \begin{align*}{\frac{{c}^{2}}{af \left ( 1+\cos \left ( fx+e \right ) \right ) } \left ( -\sqrt{2}\cos \left ( fx+e \right ) \sqrt{-2\,{\frac{\cos \left ( fx+e \right ) }{1+\cos \left ( fx+e \right ) }}}{\it Artanh} \left ({\frac{\sqrt{2}\sin \left ( fx+e \right ) }{2\,\cos \left ( fx+e \right ) }\sqrt{-2\,{\frac{\cos \left ( fx+e \right ) }{1+\cos \left ( fx+e \right ) }}}} \right ) -4\,\cos \left ( fx+e \right ) \sqrt{-2\,{\frac{\cos \left ( fx+e \right ) }{1+\cos \left ( fx+e \right ) }}}\ln \left ({\frac{1}{\sin \left ( fx+e \right ) } \left ( \sqrt{-2\,{\frac{\cos \left ( fx+e \right ) }{1+\cos \left ( fx+e \right ) }}}\sin \left ( fx+e \right ) -\cos \left ( fx+e \right ) +1 \right ) } \right ) -\sqrt{2}\sqrt{-2\,{\frac{\cos \left ( fx+e \right ) }{1+\cos \left ( fx+e \right ) }}}{\it Artanh} \left ({\frac{\sqrt{2}\sin \left ( fx+e \right ) }{2\,\cos \left ( fx+e \right ) }\sqrt{-2\,{\frac{\cos \left ( fx+e \right ) }{1+\cos \left ( fx+e \right ) }}}} \right ) -4\,\sqrt{-2\,{\frac{\cos \left ( fx+e \right ) }{1+\cos \left ( fx+e \right ) }}}\ln \left ({\frac{1}{\sin \left ( fx+e \right ) } \left ( \sqrt{-2\,{\frac{\cos \left ( fx+e \right ) }{1+\cos \left ( fx+e \right ) }}}\sin \left ( fx+e \right ) -\cos \left ( fx+e \right ) +1 \right ) } \right ) +2\,\sin \left ( fx+e \right ) \right ) \sqrt{{\frac{a \left ( 1+\cos \left ( fx+e \right ) \right ) }{\cos \left ( fx+e \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c-c*sec(f*x+e))^2/(a+a*sec(f*x+e))^(1/2),x)

[Out]

c^2/f/a*(-2^(1/2)*cos(f*x+e)*(-2*cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*arctanh(1/2*2^(1/2)*(-2*cos(f*x+e)/(1+cos(f*
x+e)))^(1/2)*sin(f*x+e)/cos(f*x+e))-4*cos(f*x+e)*(-2*cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*ln(((-2*cos(f*x+e)/(1+co
s(f*x+e)))^(1/2)*sin(f*x+e)-cos(f*x+e)+1)/sin(f*x+e))-2^(1/2)*(-2*cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*arctanh(1/2
*2^(1/2)*(-2*cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*sin(f*x+e)/cos(f*x+e))-4*(-2*cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*ln
(((-2*cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*sin(f*x+e)-cos(f*x+e)+1)/sin(f*x+e))+2*sin(f*x+e))*(1/cos(f*x+e)*a*(1+c
os(f*x+e)))^(1/2)/(1+cos(f*x+e))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c*sec(f*x+e))^2/(a+a*sec(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 2.75899, size = 1138, normalized size = 9.56 \begin{align*} \left [\frac{2 \, c^{2} \sqrt{\frac{a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \sin \left (f x + e\right ) + 2 \, \sqrt{2}{\left (a c^{2} \cos \left (f x + e\right ) + a c^{2}\right )} \sqrt{-\frac{1}{a}} \log \left (\frac{2 \, \sqrt{2} \sqrt{\frac{a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \sqrt{-\frac{1}{a}} \cos \left (f x + e\right ) \sin \left (f x + e\right ) + 3 \, \cos \left (f x + e\right )^{2} + 2 \, \cos \left (f x + e\right ) - 1}{\cos \left (f x + e\right )^{2} + 2 \, \cos \left (f x + e\right ) + 1}\right ) -{\left (c^{2} \cos \left (f x + e\right ) + c^{2}\right )} \sqrt{-a} \log \left (\frac{2 \, a \cos \left (f x + e\right )^{2} + 2 \, \sqrt{-a} \sqrt{\frac{a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \cos \left (f x + e\right ) \sin \left (f x + e\right ) + a \cos \left (f x + e\right ) - a}{\cos \left (f x + e\right ) + 1}\right )}{a f \cos \left (f x + e\right ) + a f}, \frac{2 \,{\left (c^{2} \sqrt{\frac{a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \sin \left (f x + e\right ) -{\left (c^{2} \cos \left (f x + e\right ) + c^{2}\right )} \sqrt{a} \arctan \left (\frac{\sqrt{\frac{a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \cos \left (f x + e\right )}{\sqrt{a} \sin \left (f x + e\right )}\right ) + \frac{2 \, \sqrt{2}{\left (a c^{2} \cos \left (f x + e\right ) + a c^{2}\right )} \arctan \left (\frac{\sqrt{2} \sqrt{\frac{a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \cos \left (f x + e\right )}{\sqrt{a} \sin \left (f x + e\right )}\right )}{\sqrt{a}}\right )}}{a f \cos \left (f x + e\right ) + a f}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c*sec(f*x+e))^2/(a+a*sec(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

[(2*c^2*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*sin(f*x + e) + 2*sqrt(2)*(a*c^2*cos(f*x + e) + a*c^2)*sqrt(-1/
a)*log((2*sqrt(2)*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*sqrt(-1/a)*cos(f*x + e)*sin(f*x + e) + 3*cos(f*x + e
)^2 + 2*cos(f*x + e) - 1)/(cos(f*x + e)^2 + 2*cos(f*x + e) + 1)) - (c^2*cos(f*x + e) + c^2)*sqrt(-a)*log((2*a*
cos(f*x + e)^2 + 2*sqrt(-a)*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*cos(f*x + e)*sin(f*x + e) + a*cos(f*x + e)
 - a)/(cos(f*x + e) + 1)))/(a*f*cos(f*x + e) + a*f), 2*(c^2*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*sin(f*x +
e) - (c^2*cos(f*x + e) + c^2)*sqrt(a)*arctan(sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*cos(f*x + e)/(sqrt(a)*sin
(f*x + e))) + 2*sqrt(2)*(a*c^2*cos(f*x + e) + a*c^2)*arctan(sqrt(2)*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*co
s(f*x + e)/(sqrt(a)*sin(f*x + e)))/sqrt(a))/(a*f*cos(f*x + e) + a*f)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} c^{2} \left (\int - \frac{2 \sec{\left (e + f x \right )}}{\sqrt{a \sec{\left (e + f x \right )} + a}}\, dx + \int \frac{\sec ^{2}{\left (e + f x \right )}}{\sqrt{a \sec{\left (e + f x \right )} + a}}\, dx + \int \frac{1}{\sqrt{a \sec{\left (e + f x \right )} + a}}\, dx\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c*sec(f*x+e))**2/(a+a*sec(f*x+e))**(1/2),x)

[Out]

c**2*(Integral(-2*sec(e + f*x)/sqrt(a*sec(e + f*x) + a), x) + Integral(sec(e + f*x)**2/sqrt(a*sec(e + f*x) + a
), x) + Integral(1/sqrt(a*sec(e + f*x) + a), x))

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c*sec(f*x+e))^2/(a+a*sec(f*x+e))^(1/2),x, algorithm="giac")

[Out]

Timed out